How Synaptic Release Probability Shapes Neuronal Transmission: Information-Theoretic Analysis in a Cerebellar Granule Cell

Author:

Arleo Angelo1,Nieus Thierry2,Bezzi Michele3,D'Errico Anna4,D'Angelo Egidio4,Coenen Olivier J.-M. D.3

Affiliation:

1. CNRS, UPMC, UMR 7102 Neurobiology of Adaptive Processes, F-75005, Paris, France, and Neuroscience Group, SONY Computer Science Laboratory, 75005, Paris, France

2. Neuroscience and Brain Technologies, Italian Institute of Technology, 16163 Genova, Italy, and Department of Physiology, University of Pavia, and IRCCS C. Mondino, 27100, Pavia, Italy

3. Neuroscience Group, SONY Computer Science Laboratory, 75005, Paris, France

4. Department of Physiology, University of Pavia, and IRCCS C. Mondino, 27100, Pavia, Italy

Abstract

A nerve cell receives multiple inputs from upstream neurons by way of its synapses. Neuron processing functions are thus influenced by changes in the biophysical properties of the synapse, such as long-term potentiation (LTP) or depression (LTD). This observation has opened new perspectives on the biophysical basis of learning and memory, but its quantitative impact on the information transmission of a neuron remains partially elucidated. One major obstacle is the high dimensionality of the neuronal input-output space, which makes it unfeasible to perform a thorough computational analysis of a neuron with multiple synaptic inputs. In this work, information theory was employed to characterize the information transmission of a cerebellar granule cell over a region of its excitatory input space following synaptic changes. Granule cells have a small dendritic tree (on average, they receive only four mossy fiber afferents), which greatly bounds the input combinatorial space, reducing the complexity of information-theoretic calculations. Numerical simulations and LTP experiments quantified how changes in neurotransmitter release probability (p) modulated information transmission of a cerebellar granule cell. Numerical simulations showed that p shaped the neurotransmission landscape in unexpected ways. As p increased, the optimality of the information transmission of most stimuli did not increase strictly monotonically; instead it reached a plateau at intermediate p levels. Furthermore, our results showed that the spatiotemporal characteristics of the inputs determine the effect of p on neurotransmission, thus permitting the selection of distinctive preferred stimuli for different p values. These selective mechanisms may have important consequences on the encoding of cerebellar mossy fiber inputs and the plasticity and computation at the next circuit stage, including the parallel fiber–Purkinje cell synapses.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3