Optimal Multivariate Tuning with Neuron-Level and Population-Level Energy Constraints

Author:

Harel Yuval1,Meir Ron1

Affiliation:

1. Department of Electrical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel

Abstract

Optimality principles have been useful in explaining many aspects of biological systems. In the context of neural encoding in sensory areas, optimality is naturally formulated in a Bayesian setting as neural tuning which minimizes mean decoding error. Many works optimize Fisher information, which approximates the minimum mean square error (MMSE) of the optimal decoder for long encoding time but may be misleading for short encoding times. We study MMSE-optimal neural encoding of a multivariate stimulus by uniform populations of spiking neurons, under firing rate constraints for each neuron as well as for the entire population. We show that the population-level constraint is essential for the formulation of a well-posed problem having finite optimal tuning widths and optimal tuning aligns with the principal components of the prior distribution. Numerical evaluation of the two-dimensional case shows that encoding only the dimension with higher variance is optimal for short encoding times. We also compare direct MMSE optimization to optimization of several proxies to MMSE: Fisher information, maximum likelihood estimation error, and the Bayesian Cramér-Rao bound. We find that optimization of these measures yields qualitatively misleading results regarding MMSE-optimal tuning and its dependence on encoding time and energy constraints.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3