Efficient Coding of Time-Relative Structure Using Spikes

Author:

Smith Evan1,Lewicki Michael S.2

Affiliation:

1. Department of Psychology, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

2. Department of Computer Science, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

Abstract

Nonstationary acoustic features provide essential cues for many auditory tasks, including sound localization, auditory stream analysis, and speech recognition. These features can best be characterized relative to a precise point in time, such as the onset of a sound or the beginning of a harmonic periodicity. Extracting these types of features is a difficult problem. Part of the difficulty is that with standard block-based signal analysis methods, the representation is sensitive to the arbitrary alignment of the blocks with respect to the signal. Convolutional techniques such as shift-invariant transformations can reduce this sensitivity, but these do not yield a code that is efficient, that is, one that forms a nonredundant representation of the underlying structure. Here, we develop a non-block-based method for signal representation that is both time relative and efficient. Signals are represented using a linear superposition of time-shiftable kernel functions, each with an associated magnitude and temporal position. Signal decomposition in this method is a non-linear process that consists of optimizing the kernel function scaling coefficients and temporal positions to form an efficient, shift-invariant representation. We demonstrate the properties of this representation for the purpose of characterizing structure in various types of nonstationary acoustic signals. The computational problem investigated here has direct relevance to the neural coding at the auditory nerve and the more general issue of how to encode complex, time-varying signals with a population of spiking neurons.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Intel neuromorphic DNS challenge;Neuromorphic Computing and Engineering;2023-08-10

2. Two stages of bandwidth scaling drives efficient neural coding of natural sounds;PLOS Computational Biology;2023-02-14

3. SYSTEM OF VESSEL VIBRATIONAL DIAGNOSING;HERALD OF POLOTSK STATE UNIVERSITY. Series С FUNDAMENTAL SCIENCES;2022-05-12

4. Age-Related Unstructured Spike Patterns and Molecular Localization in Drosophila Circadian Neurons;Frontiers in Physiology;2022-03-09

5. Connected Hearing Devices and Audiologists: The User-Centered Development of Digital Service Innovations;Frontiers in Digital Health;2021-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3