Oscillatory Networks: Pattern Recognition Without a Superposition Catastrophe

Author:

Burwick Thomas1

Affiliation:

1. Institut fü ur Neuroinformatik, Ruhr-Universitü at Bochum, 44306 Bochum, Germany,

Abstract

Using an oscillatory network model that combines classical network models with phase dynamics, we demonstrate how the superposition catastrophe of pattern recognition may be avoided in the context of phase models. The model is designed to meet two requirements: on and off states should correspond, respectively, to high and low phase velocities, and patterns should be retrieved in coherent mode. Nonoverlapping patterns can be simultaneously active with mutually different phases. For overlapping patterns, competition can be used to reduce coherence to a subset of patterns. The model thereby solves the superposition problem.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the ability of standard and brain-constrained deep neural networks to support cognitive superposition: a position paper;Cognitive Neurodynamics;2024-02-04

2. Toward Autonomous Adaptive Intelligence: Building Upon Neural Models of How Brains Make Minds;IEEE Transactions on Systems, Man, and Cybernetics: Systems;2021-01

3. Tunability of auto resonance network;SN Applied Sciences;2020-04-18

4. BIFURCATIONS IN A STAR-LIKE NETWORK OF STUART–LANDAU OSCILLATORS;International Journal of Bifurcation and Chaos;2012-07

5. Flow version of statistical neurodynamics for oscillator neural networks;Physica A: Statistical Mechanics and its Applications;2012-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3