Identification of Multiple-Input Systems with Highly Coupled Inputs: Application to EMG Prediction from Multiple Intracortical Electrodes

Author:

Westwick David T.1,Pohlmeyer Eric A.2,Solla Sara A.3,Miller Lee E.4,Perreault Eric J.5

Affiliation:

1. Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.,

2. Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, U.S.A.,

3. Department of Physiology, Northwestern Medical School, Chicago, IL, 60611, and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, U.S.A.,

4. Department of Physiology, Northwestern Medical School, Chicago, IL 60611, U.S.A.,

5. Department of Physical Medicine and Rehabilitation, Northwestern University Medical School, Chicago, IL 60611, U.S.A.,

Abstract

A robust identification algorithm has been developed for linear, time-invariant, multiple-input single-output systems, with an emphasis on how this algorithm can be used to estimate the dynamic relationship between a set of neural recordings and related physiological signals. The identification algorithm provides a decomposition of the system output such that each component is uniquely attributable to a specific input signal, and then reduces the complexity of the estimation problem by discarding those input signals that are deemed to be insignificant. Numerical difficulties due to limited input bandwidth and correlations among the inputs are addressed using a robust estimation technique based on singular value decomposition. The algorithm has been evaluated on both simulated and experimental data. The latter involved estimating the relationship between up to 40 simultaneously recorded motor cortical signals and peripheral electromyograms (EMGs) from four upper limb muscles in a freely moving primate.The algorithm performed well in both cases:it provided reliable estimates of the system output and significantly reduced the number of inputs needed for output prediction. For example, although physiological recordings from up to 40 different neuronal signals were available, the input selection algorithm reduced this to 10 neuronal signals that made signicant contributions to the recorded EMGs.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3