Affiliation:
1. Instituto Tecnológico de Aeronáutica, S. J. dos Campos, Brazil,
Abstract
This work concerns the selection of input-output pairs for improved training of multilayer perceptrons, in the context of approximation of univariate real functions. A criterion for the choice of the number of neurons in the hidden layer is also provided. The main idea is based on the fact that Chebyshev polynomials can provide approximations to bounded functions up to a prescribed tolerance, and, in turn, a polynomial of a certain order can be fitted with a three-layer perceptron with a prescribed number of hidden neurons. The results are applied to a sensor identification example.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献