Affiliation:
1. Department of Mathematics, Tufts University, Medford, MA 02155, U.S.A.
2. Department of Mathematics and Center for Bio Dynamics, Boston University, Boston, MA 02215, U.S.A.
Abstract
Synchronous rhythmic spiking in neuronal networks can be brought about by the interaction between E-cells and Icells (excitatory and inhibitory cells). The I-cells gate and synchronize the E-cells, and the E-cells drive and synchronize the I-cells. We refer to rhythms generated in this way as PING (pyramidal-interneuronal gamma) rhythms. The PING mechanism requires that the drive II to the I-cells be sufficiently low; the rhythm is lost when II gets too large. This can happen in at least two ways. In the first mechanism, the I-cells spike in synchrony, but get ahead of the E-cells, spiking without being prompted by the E-cells. We call this phase walkthrough of the I-cells. In the second mechanism, the I-cells fail to synchronize, and their activity leads to complete suppression of the E-cells. Noisy spiking in the E-cells, generated by noisy external drive, adds excitatory drive to the I-cells and may lead to phase walkthrough. Noisy spiking in the I-cells adds inhibition to the E-cells and may lead to suppression of the E-cells. An analysis of the conditions under which noise leads to phase walkthrough of the I-cells or suppression of the E-cells shows that PING rhythms at frequencies far below the gamma range are robust to noise only if network parameter values are tuned very carefully. Together with an argument explaining why the PING mechanism does not work far above the gamma range in the presence of heterogeneity, this justifies the “G” in “PING.”
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
172 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献