Multiple Model-Based Reinforcement Learning

Author:

Doya Kenji1,Samejima Kazuyuki2,Katagiri Ken-ichi3,Kawato Mitsuo4

Affiliation:

1. Human Information Science Laboratories, ATR International, Seika, Soraku, Kyoto 619-0288, Japan; CREST, Japan Science and Technology Corporation, Seika, Soraku, Kyoto 619-0288, Japan; Kawato Dynamic Brain Project, ERATO, Japan Science and Technology Corporation, Seika, Soraku, Kyoto 619-0288, Japan; and Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan,

2. Human Information Science Laboratories, ATR International, Seika, Soraku, Kyoto 619-0288, Japan, and Kawato Dynamic Brain Project, ERATO, Japan Science and Technology Corporation, Seika, Soraku, Kyoto 619-0288, Japan,

3. ATR Human Information Processing Research Laboratories, Seika, Soraku, Kyoto 619-0288, Japan, and Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan,

4. Human Information Science Laboratories, ATR International, Seika, Soraku, Kyoto 619-0288, Japan; Kawato Dynamic Brain Project, ERATO, Japan Science and Technology Corporation, Seika, Soraku, Kyoto 619-0288, Japan; and Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan,

Abstract

We propose a modular reinforcement learning architecture for nonlinear, nonstationary control tasks, which we call multiple model-based reinforcement learning (MMRL). The basic idea is to decompose a complex task into multiple domains in space and time based on the predictability of the environmental dynamics. The system is composed of multiple modules, each of which consists of a state prediction model and a reinforcement learning controller. The “responsibility signal,” which is given by the softmax function of the prediction errors, is used to weight the outputs of multiple modules, as well as to gate the learning of the prediction models and the reinforcement learning controllers. We formulate MMRL for both discrete-time, finite-state case and continuous-time, continuous-state case. The performance of MMRL was demonstrated for discrete case in a nonstationary hunting task in a grid world and for continuous case in a nonlinear, nonstationary control task of swinging up a pendulum with variable physical parameters.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 302 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3