Center-Crossing Recurrent Neural Networks for the Evolution of Rhythmic Behavior

Author:

Mathayomchan Boonyanit1,Beer Randall D.2

Affiliation:

1. Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, U.S.A.,

2. Departments of Electrical Engineering and Computer Science and of Biology, Case Western Reserve University, Cleveland, OH 44106, U.S.A.,

Abstract

A center-crossing recurrent neural network is one in which the null- (hyper) surfaces of each neuron intersect at their exact centers of symmetry, ensuring that each neuron's activation function is centered over the range of net inputs that it receives. We demonstrate that relative to a random initial population, seeding the initial population of an evolutionary search with center-crossing networks significantly improves both the frequency and the speed with which high-fitness oscillatory circuits evolve on a simple walking task. The improvement is especially striking at low mutation variances. Our results suggest that seeding with center-crossing networks may often be beneficial, since a wider range of dynamics is more likely to be easily accessible from a population of center-crossing networks than from a population of random networks.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3