A Computational Model of Lateralization and Asymmetries in Cortical Maps

Author:

Levitan Svetlana1,Reggia James A.1

Affiliation:

1. Deptartments of Computer Science and Neurology, Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, U.S.A.

Abstract

While recent experimental work has defined asymmetries and lateralization in left and right cortical maps, the mechanisms underlying these phenomena are currently not established. In order to explore some possible mechanisms in theory, we studied a neural model consisting of paired cerebral hemispheric regions interacting via a simulated corpus callosum. Starting with random synaptic strengths, unsupervised (Hebbian) synaptic modifications led to the emergence of a topographic map in one or both hemispheric regions. Because of uncertainties concerning the nature of hemispheric interactions, both excitatory and inhibitory callosal influences were examined independently. A sharp transition in model behavior was observed depending on callosal strength. For excitatory or weakly inhibitory callosal interactions, complete and symmetric mirror-image maps generally appeared in both hemispheric regions. In contrast, with stronger inhibitory callosal interactions, partial to complete map lateralization tended to occur, and the maps in each hemispheric region often became complementary. Lateralization occurred readily toward the side having a larger cortical region or higher excitability. Asymmetric synaptic plasticity, however, had only a transitory effect on lateralization. These results support the hypotheses that interhemispheric competition occurs, that multiple underlying asymmetries may lead to function lateralization, and that the effects of asymmetric synaptic plasticity may vary depending on whether supervised or unsupervised learning is involved. To our knowledge, this is the first computational model to demonstrate the emergence of topographic map lateralization and asymmetries.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3