Analysis of Sparse Representation and Blind Source Separation

Author:

Li Yuanqing1,Cichocki Andrzej2,Amari Shun-ichi3

Affiliation:

1. Laboratory for Advanced Brain Signal Processing and RIKEN Brain Science Institute, Wako shi, Saitama, 3510198, Japan, and Automation Science And Engineering Institute, Southchina University of Technology, Guangzhou, China,

2. Laboratory for Advanced Brain Signal Processing and RIKEN Brain Science Institute, Wako shi, Saitama, 3510198, Japan, and The Department of Electrical Engineering, Warsaw University of Technology, Warsaw, Poland,

3. Laboratory for Mathematical Neuroscience, RIKEN Brain Science Institute, Wako shi, Saitama, 3510198, Japan,

Abstract

In this letter, we analyze a two-stage cluster-then-l1-optimization approach for sparse representation of a data matrix, which is also a promising approach for blind source separation (BSS) in which fewer sensors than sources are present. First, sparse representation (factorization) of a data matrix is discussed. For a given overcomplete basis matrix, the corresponding sparse solution (coefficient matrix) with minimum l1 norm is unique with probability one, which can be obtained using a standard linear programming algorithm. The equivalence of the l1—norm solution and the l0—norm solution is also analyzed according to a probabilistic framework. If the obtained l1—norm solution is sufficiently sparse, then it is equal to the l0—norm solution with a high probability. Furthermore, the l1—norm solution is robust to noise, but the l0—norm solution is not, showing that the l1—norm is a good sparsity measure. These results can be used as a recoverability analysis of BSS, as discussed. The basis matrix in this article is estimated using a clustering algorithm followed by normalization, in which the matrix columns are the cluster centers of normalized data column vectors. Zibulevsky, Pearlmutter, Boll, and Kisilev (2000) used this kind of two-stage approach in underdetermined BSS. Our recoverability analysis shows that this approach can deal with the situation in which the sources are overlapped to some degree in the analyzed

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 215 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3