Nonlinear Population Codes

Author:

Shamir Maoz1,Sompolinsky Haim1

Affiliation:

1. Racah Institute of Physics and Center for Neural Computation, Hebrew University of Jerusalem, Jerusalem 91904, Israel,

Abstract

Theoretical and experimental studies of distributed neuronal representations of sensory and behavioral variables usually assume that the tuning of the mean firing rates is the main source of information. However, recent theoretical studies have investigated the effect of cross-correlations in the trial-to-trial fluctuations of the neuronal responses on the accuracy of the representation. Assuming that only the first-order statistics of the neuronal responses are tuned to the stimulus, these studies have shown that n the presence of correlations, similar to those observed experimentally in cortical ensembles of neurons, the amount of information in the population is limited, yielding nonzero error levels even in the limit of infinitely large populations of neurons. In this letter, we study correlated neuronal populations whose higher-order statistics, and in particular response variances, are also modulated by the stimulus. We ask two questions: Does the correlated noise limit the accuracy of the neuronal representation of the stimulus? and, How can a biological mechanism extract most of the information embedded in the higher-order statistics of the neuronal responses? Specifically, we address these questions in the context of a population of neurons coding an angular variable. We show that the information embedded in the variances grows linearly with the population size despite the presence of strong correlated noise. This information cannot be extracted by linear readout schemes, including the linear population vector. Instead, we propose a bilinear readout scheme that involves spatial decorrelation, quadratic nonlinearity, and population vector summation. We show that this nonlinear population vector scheme yields accurate estimates of stimulus parameters, with an efficiency that grows linearly with the population size. This code can be implemented using biologically plausible neurons.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3