An Expectation-Maximization Approach to Nonlinear Component Analysis

Author:

Rosipal Roman1,Girolami Mark1

Affiliation:

1. Computational Intelligence Research Unit, Department of Computing and Information Systems, University of Paisley, Paisley, PA1 2BE, Scotland, U.K.

Abstract

The proposal of considering nonlinear principal component analysis as a kernel eigenvalue problem has provided an extremely powerful method of extracting nonlinear features for a number of classification and regression applications. Whereas the utilization of Mercer kernels makes the problem of computing principal components in, possibly, infinite-dimensional feature spaces tractable, there are still the attendant numerical problems of diagonalizing large matrices. In this contribution, we propose an expectation-maximization approach for performing kernel principal component analysis and show this to be a computationally efficient method, especially when the number of data points is large.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reduced Kernel PCA Model for Nonlinear Spectrum Sensing in Cognitive Radio Network;Journal of The Institution of Engineers (India): Series B;2024-06-14

2. KPCA-Based Under-Sampling Algorithm for Unbalanced Data;Advances in Applied Mathematics;2024

3. RKPCA-based approach for fault detection in large scale systems using variogram method;Chemometrics and Intelligent Laboratory Systems;2022-06

4. A*-FastIsomap: An Improved Performance of Classical Isomap Based on A* Search Algorithm;2022 5th International Conference on Artificial Intelligence and Big Data (ICAIBD);2022-05-27

5. Non-linear process monitoring using kernel principal component analysis: A review of the basic and modified techniques with industrial applications;Brazilian Journal of Chemical Engineering;2021-07-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3