A Model of Invariant Object Recognition in the Visual System: Learning Rules, Activation Functions, Lateral Inhibition, and Information-Based Performance Measures

Author:

Rolls Edmund T.1,Milward T.1

Affiliation:

1. Oxford University, Department of Experimental Psychology, Oxford OX1 3UD, England

Abstract

VisNet2 is a model to investigate some aspects of invariant visual object recognition in the primate visual system. It is a four-layer feedforward network with convergence to each part of a layer from a small region of the preceding layer, with competition between the neurons within a layer and with a trace learning rule to help it learn transform invariance. The trace rule is a modified Hebbian rule, which modifies synaptic weights according to both the current firing rates and the firing rates to recently seen stimuli. This enables neurons to learn to respond similarly to the gradually transforming inputs it receives, which over the short term are likely to be about the same object, given the statistics of normal visual inputs. First, we introduce for VisNet2 both single-neuron and multiple-neuron information-theoretic measures of its ability to respond to transformed stimuli. Second, using these measures, we show that quantitatively resetting the trace between stimuli is not necessary for good performance. Third, it is shown that the sigmoid activation functions used in VisNet2, which allow the sparseness of the representation to be controlled, allow good performance when using sparse distributed representations. Fourth, it is shown that VisNet2 operates well with medium-range lateral inhibition with a radius in the same order of size as the region of the preceding layer from which neurons receive inputs. Fifth, in an investigation of different learning rules for learning transform invariance, it is shown that VisNet2 operates better with a trace rule that incorporates in the trace only activity from the preceding presentations of a given stimulus, with no contribution to the trace from the current presentation, and that this is related to temporal difference learning.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3