Long-Term Reward Prediction in TD Models of the Dopamine System

Author:

Daw Nathaniel D.1,Touretzky David S.1

Affiliation:

1. Computer Science Department and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

Abstract

This article addresses the relationship between long-term reward predictions and slow-timescale neural activity in temporal difference (TD) models of the dopamine system. Such models attempt to explain how the activity of dopamine (DA) neurons relates to errors in the prediction of future rewards. Previous models have been mostly restricted to short-term predictions of rewards expected during a single, somewhat artificially defined trial. Also, the models focused exclusively on the phasic pause-and-burst activity of primate DA neurons; the neurons' slower, tonic background activity was assumed to be constant. This has led to difficulty in explaining the results of neurochemical experiments that measure indications of DA release on a slow timescale, results that seem at first glance inconsistent with a reward prediction model. In this article, we investigate a TD model of DA activity modified so as to enable it to make longer-term predictions about rewards expected far in the future. We show that these predictions manifest themselves as slow changes in the baseline error signal, which we associate with tonic DA activity. Using this model, we make new predictions about the behavior of the DA system in a number of experimental situations. Some of these predictions suggest new computational explanations for previously puzzling data, such as indications from microdialysis studies of elevated DA activity triggered by aversive events.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3