A Classification Paradigm for Distributed Vertically Partitioned Data

Author:

Basak Jayanta1,Kothari Ravi1

Affiliation:

1. IBM India Research Laboratory, Indian Institute of Technology, New Delhi 110016, India

Abstract

In general, pattern classification algorithms assume that all the features are available during the construction of a classifier and its subsequent use. In many practical situations, data are recorded in different servers that are geographically apart, and each server observes features of local interest. The underlying infrastructure and other logistics (such as access control) in many cases do not permit continual synchronization. Each server thus has a partial view of the data in the sense that feature subsets (not necessarily disjoint) are available at each server. In this article, we present a classification algorithm for this distributed vertically partitioned data. We assume that local classifiers can be constructed based on the local partial views of the data available at each server. These local classifiers can be any one of the many standard classifiers (e.g., neuralnetworks, decision tree, k nearest neighbor). Often these local classifiers are constructed to support decision making at each location, and our focus is not on these individual local classifiers. Rather, our focus is constructing a classifier that can use these local classifiers to achieve an error rate that is as close as possible to that of a classifier having access to the entire feature set. We empirically demonstrate the efficacy of the proposed algorithm and also provide theoretical results quantifying the loss that results as compared to the situation where the entire feature set is available to any single classifier.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3