An Algorithm of Supervised Learning for Multilayer Neural Networks

Author:

Tang Zheng1,Wang Xu Gang1,Tamura Hiroki1,Ishii Masahiro1

Affiliation:

1. Faculty of Engineering, Toyama University, 3190 Gofuku Toyama 930-8555, Japan,

Abstract

A method of supervised learning for multilayer artificial neural networks to escape local minima is proposed. The learning model has two phases: a backpropagation phase and a gradient ascent phase. The backpropagation phase performs steepest descent on a surface in weight space whose height at any point in weight space is equal to an error measure, and it finds a set of weights minimizing this error measure. When the backpropagation gets stuck in local minima, the gradient ascent phase attempts to fill up the valley by modifying gain parameters in a gradient ascent direction of the error measure. The two phases are repeated until the network gets out of local minima. The algorithm has been tested on benchmark problems, such as exclusive-or (XOR), parity, alphabetic characters learning, Arabic numerals with a noise recognition problem, and a realistic real-world problem: classification of radar returns from the ionosphere. For all of these problems, the systems are shown to be capable of escaping from the backpropagation local minima and converge faster when using the new proposed method than using the simulated annealing techniques.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multilayer Perceptrons: Architecture and Error Backpropagation;Neural Networks and Statistical Learning;2019

2. Two Diverse Swarm Intelligence Techniques for Supervised Learning;International Journal of Swarm Intelligence Research;2015-10

3. Multilayer Perceptrons: Architecture and Error Backpropagation;Neural Networks and Statistical Learning;2013-12-07

4. Correlation versus prediction in children's word learning: Cross-linguistic evidence and simulations;Language and Cognition;2009-06

5. Soft Computing;Studies in Computational Intelligence;2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3