Investigating the Fault Tolerance of Neural Networks

Author:

Tchernev Elko B.1,Mulvaney Rory G.1,Phatak Dhananjay S.1

Affiliation:

1. Computer Science and Electrical Engineering Department, University of Maryland Baltimore County, Baltimore, MD 21250, U.S.A.

Abstract

Particular levels of partial fault tolerance (PFT) in feedforward artificial neural networks of a given size can be obtained by redundancy (replicating a smaller normally trained network), by design (training specifically to increase PFT), and by a combination of the two (replicating a smaller PFT-trained network). This letter investigates the method of achieving the highest PFT per network size (total number of units and connections) for classification problems. It concludes that for nontoy problems, there exists a normally trained network of optimal size that produces the smallest fully fault-tolerant network when replicated. In addition, it shows that for particular network sizes, the best level of PFT is achieved by training a network of that size for fault tolerance. The results and discussion demonstrate how the outcome depends on the levels of saturation of the network nodes when classifying data points. With simple training tasks, where the complexity of the problem and the size of the network are well within the ability of the training method, the hidden-layer nodes operate close to their saturation points, and classification is clean. Under such circumstances, replicating the smallest normally trained correct network yields the highest PFT for any given network size. For hard training tasks (difficult classification problems or network sizes close to the minimum), normal training obtains networks that do not operate close to their saturation points, and outputs are not as close to their targets. In this case, training a larger network for fault tolerance yields better PFT than replicating a smaller, normally trained network. However, since fault-tolerant training on its own produces networks that operate closer to their linear areas than normal training, replicating normally trained networks ultimately leads to better PFT than replicating fault-tolerant networks of the same initial size.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3