Mean-Field Approaches to Independent Component Analysis

Author:

Højen-Sørensen Pedro A.d.F.R.1,Winther Ole2,Hansen Lars Kai1

Affiliation:

1. Department of Mathematical Modelling, Technical University of Denmark, DK-2800 Lyngby, Denmark,

2. Department of Mathematical Modelling and Center for Biological Sequence Analysis, Department of Biotechnology, Technical University of Denmark, DK-2800 Lyngby, Denmark,

Abstract

We develop mean-field approaches for probabilistic independent component analysis (ICA). The sources are estimated from the mean of their posterior distribution and the mixing matrix (and noise level) is estimated by maximum a posteriori (MAP). The latter requires the computation of (a good approximation to) the correlations between sources. For this purpose, we investigate three increasingly advanced mean-field methods: the variational (also known as naive mean field) approach, linear response corrections, and an adaptive version of the Thouless, Anderson and Palmer (1977) (TAP) mean-field approach, which is due to Opper and Winther (2001). The resulting algorithms are tested on a number of problems. On synthetic data, the advanced mean-field approaches are able to recover the correct mixing matrix in cases where the variational mean-field theory fails. For handwritten digits, sparse encoding is achieved using nonnegative source and mixing priors. For speech, the mean-field method is able to separate in the underdetermined (overcomplete) case of two sensors and three sources. One major advantage of the proposed method is its generality and algorithmic simplicity. Finally, we point out several possible extensions of the approaches developed here.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3