The Influence of Limit Cycle Topology on the Phase Resetting Curve

Author:

Oprisan Sorinel A.1,Canavier Carmen C.1

Affiliation:

1. Department of Psychology, University of New Orleans, New Orleans, LA 70148, U.S.A.

Abstract

Understanding the phenomenology of phase resetting is an essential step toward developing a formalism for the analysis of circuits composed of bursting neurons that receive multiple, and sometimes overlapping, inputs. If we are to use phase-resetting methods to analyze these circuits, we can either generate phase-resetting curves (PRCs) for all possible inputs and combinations of inputs, or we can develop an understanding of how to construct PRCs for arbitrary perturbations of a given neuron. The latter strategy is the goal of this study. We present a geometrical derivation of phase resetting of neural limit cycle oscillators in response to short current pulses. A geometrical phase is defined as the distance traveled along the limit cycle in the appropriate phase space. The perturbations in current are treated as displacements in the direction corresponding to membrane voltage. We show that for type I oscillators, the direction of a perturbation in current is nearly tangent to the limit cycle; hence, the projection of the displacement in voltage onto the limit cycle is sufficient to give the geometrical phase resetting. In order to obtain the phase resetting in terms of elapsed time or temporal phase, a mapping between geometrical and temporal phase is obtained empirically and used to make the conversion. This mapping is shown to be an invariant of the dynamics. Perturbations in current applied to type II oscillators produce significant normal displacements from the limit cycle, so the difference in angular velocity at displaced points compared to the angular velocity on the limit cycle must be taken into account. Empirical attempts to correct for differences in angular velocity (amplitude versus phase effects in terms of a circular coordinate system) during relaxation back to the limit cycle achieved some success in the construction of phase-resetting curves for type II model oscillators. The ultimate goal of this work is the extension of these techniques to biological circuits comprising type II neural oscillators, which appear frequently in identified central pattern-generating circuits.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3