Online Model Selection Based on the Variational Bayes

Author:

Sato Masa-aki1

Affiliation:

1. Information Sciences Division, ATR International, and CREST, Japan Science and Techonology Corporation, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan

Abstract

The Bayesian framework provides a principled way of model selection. This framework estimates a probability distribution over an ensemble of models, and the prediction is done by averaging over the ensemble of models. Accordingly, the uncertainty of the models is taken into account, and complex models with more degrees of freedom are penalized. However, integration over model parameters is often intractable, and some approximation scheme is needed. Recently, a powerful approximation scheme, called the variational bayes (VB) method, has been proposed. This approach defines the free energy for a trial probability distribution, which approximates a joint posterior probability distribution over model parameters and hidden variables. The exact maximization of the free energy gives the true posterior distribution. The VB method uses factorized trial distributions. The integration over model parameters can be done analytically, and an iterative expectation-maximization-like algorithm, whose convergence is guaranteed, is derived. In this article, we derive an online version of the VB algorithm and prove its convergence by showing that it is a stochastic approximation for finding the maximum of the free energy. By combining sequential model selection procedures, the online VB method provides a fully online learning method with a model selection mechanism. In preliminary experiments using synthetic data, the online VB method was able to adapt the model structure to dynamic environments.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 229 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3