Lateral Neural Model of Binocular Rivalry

Author:

Stollenwerk Lars1,Bode Mathias2

Affiliation:

1. WWU Münster, Institute of Applied Physics, 48149 Münster, Germany,

2. Fraunhofer Institut für Autonome Intelligente Systeme (AIS), c/o International University Bremen, Campus Ring 12, 28759 Bremen, Germany,

Abstract

This article introduces a two-dimensionally extended, neuron-based model for binocular rivalry. The basic block of the model is a certain type of astable multivibrator comprising excitatory and inhibitory neurons. Many of these blocks are laterally coupled on a medium range to provide a two-dimensional layer. Our model, like others, needs noise to reproduce typical stochastic oscillations. Due to its spatial extension, the noise has to be laterally correlated. When the contrast ratio of the pictures varies, their share of the perception time changes in a way that is known from comparable experimental data (Levelt, 1965; Mueller & Blake, 1989). This is a result of the lateral coupling and not a property of the single model block. The presentation of simple and suitable inhomogeneous stimuli leads to an easily describable perception of periodically moving pictures like propagating fronts or breathing spots. This suggests new experiments. Under certain conditions, a bifurcation from static to moving perceptions is predicted and may be checked and employed by future experiments. Recent “paradox” (Logothetis, 1999) observations of two different neuron classes in cortical areas MT (Logothetis & Schall, 1989) and V4 (Leopold & Logothetis, 1996), one that behaves alike under rivaling and nonrivaling conditions and another that drastically changes its behavior, are interpreted as being related to separate inhibitor neurons.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3