Affiliation:
1. Faculty of Engineering, Perugia University, I-05100 Terni, Italy,
Abstract
In recent work, we introduced nonlinear adaptive activation function (FAN) artificial neuron models, which learn their activation functions in an unsupervised way by information-theoretic adapting rules. We also applied networks of these neurons to some blind signal processing problems, such as independent component analysis and blind deconvolution. The aim of this letter is to study some fundamental aspects of FAN units' learning by investigating the properties of the associated learning differential equation systems.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献