Nonholonomic Orthogonal Learning Algorithms for Blind Source Separation

Author:

Amari Shun-ichi1,Chen Tian-Ping1,Cichocki Andrzej1

Affiliation:

1. RIKEN Brain Science Institute, Brain-Style Information Systems Group, Japan

Abstract

Independent component analysis or blind source separation extracts independent signals from their linear mixtures without assuming prior knowledge of their mixing coefficients. It is known that the independent signals in the observed mixtures can be successfully extracted except for their order and scales. In order to resolve the indeterminacy of scales, most learning algorithms impose some constraints on the magnitudes of the recovered signals. However, when the source signals are nonstationary and their average magnitudes change rapidly, the constraints force a rapid change in the magnitude of the separating matrix. This is the case with most applications (e.g., speech sounds, electroencephalogram signals). It is known that this causes numerical instability in some cases. In order to resolve this difficulty, this article introduces new nonholonomic constraints in the learning algorithm. This is motivated by the geometrical consideration that the directions of change in the separating matrix should be orthogonal to the equivalence class of separating matrices due to the scaling indeterminacy. These constraints are proved to be nonholonomic, so that the proposed algorithm is able to adapt to rapid or intermittent changes in the magnitudes of the source signals. The proposed algorithm works well even when the number of the sources is overestimated, whereas the existent algorithms do not (assuming the sensor noise is negligibly small), because they amplify the null components not included in the sources. Computer simulations confirm this desirable property.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3