Different Paradigms for Choosing Sequential Reweighting Algorithms

Author:

Blanchard Gilles1

Affiliation:

1. Département de Mathématiques, Université Paris-Sud, 91405 Orsay Cedex, France; and Fraunhofer FIRST Kekuléstr. 7, 12489 Berlin, Germany,

Abstract

Analyses of the success of ensemble methods in classification have pointed out the important role played by the margin distribution function on the training and test sets. While it is acknowledged that one should generally try to achieve high margins on the training set, the more precise shape of the empirical margin distribution function one should favor in practice is subject to different approaches. We first present two concurrent philosophies for choosing the empirical margin profile: the minimax margin paradigm and the mean and variance paradigm. The best-known representative of the first paradigm is the AdaBoost algorithm, and this philosophy has been shown by several other authors to be closely related to the principle of the support vector machine. We show that the second paradigm is very close in spirit to Fisher's linear discriminant (in a feature space). We construct two boosting-type algorithms, very similar in their form, dedicated to one or the other philosophy. We consequently derive by interpolation a very simple family of iterative reweighting algorithms that can be understood as different trade-offs between the two paradigms and argue from experiments that this can allow for a suitable adaptivity to different classification problems, particularly in the presence of noise or excessive complexity of the base classifiers.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3