Affiliation:
1. Institut de Robòtica i Informàtica Industrial, (CSIC-UPC), 08034-Barcelona, Spain
Abstract
We show that minimizing the expected error of a feedforward network over a distribution of weights results in an approximation that tends to be independent of network size as the number of hidden units grows. This minimization can be easily performed, and the complexity of the resulting function implemented by the network is regulated by the variance of the weight distribution. For a fixed variance, there is a number of hidden units above which either the implemented function does not change or the change is slight and tends to zero as the size of the network grows. In sum, the control of the complexity depends on only the variance, not the architecture, provided it is large enough.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献