Optimization via Intermittency with a Self-Organizing Neural Network

Author:

Kwok Terence1,Smith Kate A.1

Affiliation:

1. School of Business Systems, Faculty of Information Technology, Monash University, Clayton, Victoria 3168, Australia,

Abstract

One of the major obstacles in using neural networks to solve combinatorial optimization problems is the convergence toward one of the many local minima instead of the global minima. In this letter, we propose a technique that enables a self-organizing neural network to escape from local minima by virtue of the intermittency phenomenon. It gives rise to novel search dynamics that allow the system to visit multiple global minima as meta-stable states. Numerical experiments performed suggest that the phenomenon is a combined effect of Kohonen-type competitive learning and the iterated softmax function operating near bifurcation. The resultant intermittent search exhibits fractal characteristics when the optimization performance is at its peak in the form of 1/f signals in the time evolution of the cost, as well as power law distributions in the meta-stable solution states. The N-Queens problem is used as an example to illustrate the meta-stable convergence process that sequentially generates, in a single run, 92 solutions to the 8-Queens problem and 4024 solutions to the 17-Queens problem.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3