Calculation of Interspike Intervals for Integrate-and-Fire Neurons with Poisson Distribution of Synaptic Inputs

Author:

Burkitt A. N.1,Clark G. M.1

Affiliation:

1. Bionic Ear Institute, East Melbourne, Victoria 3002, Australia

Abstract

We present a new technique for calculating the interspike intervals of integrate-and-fire neurons. There are two new components to this technique. First, the probability density of the summed potential is calculated by integrating over the distribution of arrival times of the afferent post-synaptic potentials (PSPs), rather than using conventional stochastic differential equation techniques. A general formulation of this technique is given in terms of the probability distribution of the inputs and the time course of the postsynaptic response. The expressions are evaluated in the gaussian approximation, which gives results that become more accurate for large numbers of small-amplitude PSPs. Second, the probability density of output spikes, which are generated when the potential reaches threshold, is given in terms of an integral involving a conditional probability density. This expression is a generalization of the renewal equation, but it holds for both leaky neurons and situations in which there is no time-translational invariance. The conditional probability density of the potential is calculated using the same technique of integrating over the distribution of arrival times of the afferent PSPs. For inputs with a Poisson distribution, the known analytic solutions for both the perfect integrator model and the Stein model (which incorporates membrane potential leakage) in the diffusion limit are obtained. The interspike interval distribution may also be calculated numerically for models that incorporate both membrane potential leakage and a finite rise time of the postsynaptic response. Plots of the relationship between input and output firing rates, as well as the coefficient of variation, are given, and inputs with varying rates and amplitudes, including inhibitory inputs, are analyzed. The results indicate that neurons functioning near their critical threshold, where the inputs are just sufficient to cause firing, display a large variability in their spike timings.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3