Selectively Grouping Neurons in Recurrent Networks of Lateral Inhibition

Author:

Xie Xiaohui1,Hahnloser Richard H. R.2,Seung H. Sebastian2

Affiliation:

1. Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

2. Department of Brain and Cognitive Sciences and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

Abstract

Winner-take-all networks have been proposed to underlie many of the brain's fundamental computational abilities. However, notmuchisknown about how to extend the grouping of potential winners in these networks beyond single neuron or uniformly arranged groups of neurons. We show that competition between arbitrary groups of neurons can be realized by organizing lateral inhibition in linear threshold networks. Given a collection of potentially overlapping groups (with the exception of some degenerate cases), the lateral inhibition results in network dynamics such that any permitted set of neurons that can be coactivated by some input at a stable steady state is contained in one of the groups. The information about the input is preserved in this operation. The activity level of a neuron in a permitted set corresponds to its stimulus strength, amplified by some constant. Sets of neurons that are not part of a group cannot be coactivated by any input at a stable steady state. We analyze the storage capacity of such a network for random groups—the number of random groups the network can store as permitted sets without creating too many spurious ones. In this framework, we calculate the optimal sparsity of the groups (maximizing group entropy). We find that for dense inputs, the optimal sparsity is unphysiologically small. However, when the inputs and the groups are equally sparse, we derive a more plausible optimal sparsity. We believe our results are the first steps toward attractor theories in hybrid analog-digital networks.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3