On the Effect of Populations in Evolutionary Multi-Objective Optimisation

Author:

Giel Oliver1,Lehre Per Kristian2

Affiliation:

1. Fakultät für Informatik, LS 2, Technische Universität Dortmund, Germany.

2. School of Computer Science, The University of Birmingham, United Kingdom.

Abstract

Multi-objective evolutionary algorithms (MOEAs) have become increasingly popular as multi-objective problem solving techniques. An important open problem is to understand the role of populations in MOEAs. We present two simple bi-objective problems which emphasise when populations are needed. Rigorous runtime analysis points out an exponential runtime gap between the population-based algorithm simple evolutionary multi-objective optimiser (SEMO) and several single individual-based algorithms on this problem. This means that among the algorithms considered, only the population-based MOEA is successful and all other algorithms fail.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hot off the Press: Runtime Analyses of Multi-Objective Evolutionary Algorithms in the Presence of Noise;Proceedings of the Genetic and Evolutionary Computation Conference Companion;2024-07-14

2. Illustrating the Efficiency of Popular Evolutionary Multi-Objective Algorithms Using Runtime Analysis;Proceedings of the Genetic and Evolutionary Computation Conference;2024-07-14

3. A Detailed Experimental Analysis of Evolutionary Diversity Optimization for OneMinMax;Proceedings of the Genetic and Evolutionary Computation Conference;2024-07-14

4. What Performance Indicators to Use for Self-Adaptation in Multi-Objective Evolutionary Algorithms;Proceedings of the Genetic and Evolutionary Computation Conference;2024-07-14

5. Crossover can guarantee exponential speed-ups in evolutionary multi-objective optimisation;Artificial Intelligence;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3