Encouraging Behavioral Diversity in Evolutionary Robotics: An Empirical Study

Author:

Mouret J.-B.1,Doncieux S.1

Affiliation:

1. ISIR, Université Pierre et Marie Curie-Paris 6, CNRS UMR 7222, Paris, F-75252, Paris Cedex 05, France

Abstract

Evolutionary robotics (ER) aims at automatically designing robots or controllers of robots without having to describe their inner workings. To reach this goal, ER researchers primarily employ phenotypes that can lead to an infinite number of robot behaviors and fitness functions that only reward the achievement of the task—and not how to achieve it. These choices make ER particularly prone to premature convergence. To tackle this problem, several papers recently proposed to explicitly encourage the diversity of the robot behaviors, rather than the diversity of the genotypes as in classic evolutionary optimization. Such an approach avoids the need to compute distances between structures and the pitfalls of the noninjectivity of the phenotype/behavior relation; however, it also introduces new questions: how to compare behavior? should this comparison be task specific? and what is the best way to encourage diversity in this context? In this paper, we review the main published approaches to behavioral diversity and benchmark them in a common framework. We compare each approach on three different tasks and two different genotypes. The results show that fostering behavioral diversity substantially improves the evolutionary process in the investigated experiments, regardless of genotype or task. Among the benchmarked approaches, multi-objective methods were the most efficient and the generic, Hamming-based, behavioral distance was at least as efficient as task specific behavioral metrics.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 168 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of spinal sensorimotor circuits in triphasic command: a simulation approach using Goal Exploration Process;2023-12-23

2. Generating Android Tests Using Novelty Search;Search-Based Software Engineering;2023-12-04

3. Simulation of the autonomous maze navigation using the NEAT algorithm;PROBLEMS IN PROGRAMMING;2023-12

4. Evolution Through Large Models;Handbook of Evolutionary Machine Learning;2023-11-02

5. Evolutionary Ensemble Learning;Handbook of Evolutionary Machine Learning;2023-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3