Affiliation:
1. Robert Gordon University, Aberdeen, AB25 1HG, UK
Abstract
This paper improves a recently developed multi-objective particle swarm optimizer ([Formula: see text]) that incorporates dominance with decomposition used in the context of multi-objective optimization. Decomposition simplifies a multi-objective problem (MOP) by transforming it to a set of aggregation problems, whereas dominance plays a major role in building the leaders’ archive. [Formula: see text] introduces a new archiving technique that facilitates attaining better diversity and coverage in both objective and solution spaces. The improved method is evaluated on standard benchmarks including both constrained and unconstrained test problems, by comparing it with three state of the art multi-objective evolutionary algorithms: MOEA/D, OMOPSO, and dMOPSO. The comparison and analysis of the experimental results, supported by statistical tests, indicate that the proposed algorithm is highly competitive, efficient, and applicable to a wide range of multi-objective optimization problems.
Subject
Computational Mathematics
Cited by
126 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献