Asynchronous Master-Slave Parallelization of Differential Evolution for Multi-Objective Optimization

Author:

Depolli Matjaž1,Trobec Roman1,Filipič Bogdan2

Affiliation:

1. Department of Communication Systems, Jožef Stefan Institute, SI-1000, Ljubljana, Slovenia

2. Department of Intelligent Systems, Jožef Stefan Institute, SI-1000, Ljubljana, Slovenia

Abstract

In this paper, we present AMS-DEMO, an asynchronous master-slave implementation of DEMO, an evolutionary algorithm for multi-objective optimization. AMS-DEMO was designed for solving time-intensive problems efficiently on both homogeneous and heterogeneous parallel computer architectures. The algorithm is used as a test case for the asynchronous master-slave parallelization of multi-objective optimization that has not yet been thoroughly investigated. Selection lag is identified as the key property of the parallelization method, which explains how its behavior depends on the type of computer architecture and the number of processors. It is arrived at analytically and from the empirical results. AMS-DEMO is tested on a benchmark problem and a time-intensive industrial optimization problem, on homogeneous and heterogeneous parallel setups, providing performance results for the algorithm and an insight into the parallelization method. A comparison is also performed between AMS-DEMO and generational master-slave DEMO to demonstrate how the asynchronous parallelization method enhances the algorithm and what benefits it brings compared to the synchronous method.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Asynchronous evolution of deep neural network architectures;Applied Soft Computing;2024-02

2. Initialization Matters for Asynchronous Steady-State Evolutionary Algorithms;Proceedings of the Companion Conference on Genetic and Evolutionary Computation;2023-07-15

3. Fractional equivalent circuit model and parameter identification of reactance components in high-frequency operation;COMPEL - The international journal for computation and mathematics in electrical and electronic engineering;2023-03-28

4. Recent Research Topics in Evolutionary Multiobjective Optimization: A Personal Perspective;Studies in Computational Intelligence;2023

5. A frequency-based parent selection for reducing the effect of evaluation time bias in asynchronous parallel multi-objective evolutionary algorithms;Natural Computing;2022-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3