A Linear Superposition Model of Envelope and Frequency Following Responses May Help Identify Generators Based on Latency

Author:

Teichert Tobias123ORCID,Gnanateja G. Nike4ORCID,Sadagopan Srivatsun235ORCID,Chandrasekaran Bharath45ORCID

Affiliation:

1. Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA

2. Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA

3. Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA

4. Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, PA, USA

5. Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA

Abstract

Abstract Envelope and frequency-following responses (FFRENV and FFRTFS) are scalp-recorded electrophysiological potentials that closely follow the periodicity of complex sounds such as speech. These signals have been established as important biomarkers in speech and learning disorders. However, despite important advances, it has remained challenging to map altered FFRENV and FFRTFS to altered processing in specific brain regions. Here we explore the utility of a deconvolution approach based on the assumption that FFRENV and FFRTFS reflect the linear superposition of responses that are triggered by the glottal pulse in each cycle of the fundamental frequency (F0 responses). We tested the deconvolution method by applying it to FFRENV and FFRTFS of rhesus monkeys to human speech and click trains with time-varying pitch patterns. Our analyses show that F0ENV responses could be measured with high signal-to-noise ratio and featured several spectro-temporally and topographically distinct components that likely reflect the activation of brainstem (<5 ms; 200–1000 Hz), midbrain (5–15 ms; 100–250 Hz), and cortex (15–35 ms; ∼90 Hz). In contrast, F0TFS responses contained only one spectro-temporal component that likely reflected activity in the midbrain. In summary, our results support the notion that the latency of F0 components map meaningfully onto successive processing stages. This opens the possibility that pathologically altered FFRENV or FFRTFS may be linked to altered F0ENV or F0TFS and from there to specific processing stages and ultimately spatially targeted interventions.

Funder

National Institute on Deafness and Other Communication Disorders

Publisher

MIT Press - Journals

Subject

Neurology,Linguistics and Language

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3