The Simulated Evolution of Biochemical Guilds: Reconciling Gaia Theory and Natural Selection

Author:

Downing Keith1,Zvirinsky Peter2

Affiliation:

1. Department of Computer and Information Sciences Norwegian University of Science and Technology 7034 Trondheim, Norway

2. Department of Cybernetics and Artificial Intelligence Technical University of Kosice, Slovakia, Letna 9/B 04120 Kosice, Slovak Republic

Abstract

Gaia theory, which states that organisms both affect and regulate their environment, poses an interesting problem to Neo-Darwinian evolutionary biologists and provides an exciting set of phenomena for artificial-life investigation. The key challenge is to explain the emergence of biotic communities that are capable, via their implicit coordination, of regulating large-scale biogeochemical factors such as the temperature and chemical composition of the biosphere, but to assume no evolutionary mechanisms beyond contemporary natural selection. Along with providing an introduction to Gaia theory, this article presents simulations of Gaian emergence based on an artificial-life model involving genetic algorithms and guilds of simple metabolizing agents. In these simulations, resource competition leads to guild diversity; the ensemble of guilds then manifests life-sustaining nutrient recycling and exerts distributed control over environmental nutrient ratios. These results illustrate that standard individual-based natural selection is sufficient to explain Gaian self-organization, and they help clarify the relationships between two key metrics of Gaian activity: recycling and regulation.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A biotic habitable zone: impacts of adaptation in biotic temperature regulation;Monthly Notices of the Royal Astronomical Society;2023-03-27

2. A Gaian habitable zone;Monthly Notices of the Royal Astronomical Society;2023-02-20

3. The evolution of biogeochemical recycling by persistence-based selection;Communications Earth & Environment;2022-03-04

4. Selection principles for Gaia;Journal of Theoretical Biology;2022-01

5. Natural Ecosystems and Earth’s Habitability: Attempting a Cross-Disciplinary Synthesis;Strategies for Sustainability of the Earth System;2021-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3