Affiliation:
1. The Danish National Centre for IT-Research University of Aarhus, Ny Munkegade Bldg. 540 8000 Aarhus C. Denmark
2. Department of Psychology University of Nottingham Nottingham NG7 2RD England, UK
3. Department of Artificial Intelligence University of Edinburgh 5 Forrest Hill Edinburgh EH1 2QL Scotland, UK
Abstract
Behavioral experiments with crickets show that female crickets respond to male calling songs with syllable rates within a certain bandwidth only. We have made a robot model in which we implement a simple neural controller that is less complex than the controllers traditionally hypothesized for cricket phonotaxis and syllable rate preference. The simple controller, which had been successfully used with a slowed and simplified signal, is here demonstrated to function, using songs with identical parameters to those found in real male cricket song, using an analog electronic model of the peripheral auditory morphology of the female cricket as the sensor. We put the robot under the same experimental conditions as the female crickets, and it responds with phonotaxis to calling songs of real male Gryllus bimaculatus. Further, the robot only responds to songs with syllable rates within a bandwidth similar to the bandwidth found for crickets. By making polar plots of the heading direction of the robot, we obtain behavioral data that can be used in statistical analyses. These analyses show that there are statistically significant differences between the behavioral responses to calling songs with syllable rates within the bandwidth and calling songs with syllable rates outside the bandwidth. This gives the verification that the simple neural control mechanism (together with morphological auditory matched filtering) can account for the syllable rate preference found in female crickets. With our robot system, we can now systematically explore the mechanisms controlling recognition and choice behavior in the female cricket by experimental replication.
Subject
Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献