Inter- and Intra-hemispheric Processing of Visual Event-related Potentials in the Absence of the Corpus Callosum

Author:

Bayard Sophie1,Gosselin Nadia1,Robert Manon1,Lassonde Maryse12

Affiliation:

1. Université de Montréal

2. Centre de recherche Hôpital Sainte-Justine de Montréal

Abstract

Abstract Interhemispheric differences of the N100 latency in visual evoked potentials have been used to estimate interhemispheric transfer time (e.g., Saron & Davidson, 1989). Recent work has also suggested that the P300 component could reflect the efficacy of interhemispheric transmission (Polich & Hoffman, 1998). The purpose of the present study was to study the differential role of the corpus callosum (CC) and anterior commissure (AC) in the interhemispheric propagation of these two electrophysiological components. Thus, the amplitude and latency distribution of the N100 and P300 components were analyzed using high-density electrical mapping in a subject with agenesis of CC but preservation of AC, a subject with agenesis of both CC and AC, and 10 neurologically intact control subjects. The task consisted of a modified visual oddball paradigm comprising one frequent and two rare stimuli, one presented on the same and the other on the opposite side of the frequent stimulus. Interhemispheric differences in latency were found for the N100 component in controls. However, in the acallosal subjects, this component was not identifiable in the indirectly stimulated hemisphere. In controls, no interhemispheric differences were observed in the distribution of the P300 latency and amplitude to rare and frequent stimuli. The distribution of the P300 amplitude in the acallosal subject with an AC was identical to that of the controls, whereas in the acallosal subject lacking the AC, the amplitude was greater in the hemisphere receiving the frequent stimuli, regardless of the visual hemifield in which the rare stimuli were presented. In both acallosal subjects, hemispheric differences in the P300 latency were observed, the latencies being shorter in the hemisphere directly stimulated for all categories of stimuli. These results suggest that the interhemispheric transfer of both the N100 and P300 components relies on the integrity of cortical commissures. Possible P300 generator sources are discussed.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3