Theta Oscillations and Human Navigation: A Magnetoencephalography Study

Author:

Araújo Dráulio B. de12,Baffa Oswaldo2,Wakai Ronald T.1

Affiliation:

1. University of Wisconsin

2. University of Sao Paulo

Abstract

Abstract Magnetoencephalography (MEG) was used to study alpha and theta activity while subjects navigated through a computer-generated virtual reality town. The subjects were first allowed to explore the environment freely. They then had to navigate from a starting point to a destination, knowing that an obstruction would appear at one of several possible locations along the main route and force them to take a detour. Spatiotemporal analysis of the theta and alpha bands were performed (1) prior to the start of navigation, (2) from the start of navigation until the obstruction was encountered, (3) during the time subjects were contemplating a detour and were not navigating, and (4) from the resumption of navigation until the destination was reached. In all subjects, theta power was strongest during the two periods of navigation. The peak frequency of the oscillations was approximately 3.7 Hz. Control studies consisted of a motor task similar to that required for navigation, passive viewing of a tour through the same virtual reality town, and a mental concentration task. No consistent increases in theta power were seen in the MEG during any of the control tasks. The results suggest an association between theta rhythm and the performance of navigational tasks in humans.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3