Affiliation:
1. Ghent University
2. KU Leuven Medical School
3. UZ Gasthuisberg
Abstract
Abstract
The close behavioral parallels between the processing of quantitative information conveyed by symbolic and non-symbolic stimuli led to the hypothesis that there exists a common cerebral representation of quantity (Dehaene, Dehaene-Lambertz, & Cohen, 1998). The neural basis underlying the encoding of number magnitude has been localized to regions in and around the intraparietal sulcus (IPS) by brain-imaging studies. However, it has never been demonstrated that these same regions are also involved in the quantitative processing of nonsymbolic stimuli. Using functional brain imaging, we explicitly tested the hypothesis of a common substrate. Angles, lines, and two-digit numbers were presented pairwise, one to the left and one to the right of the fixation point. In the three comparison tasks, participants (n = 18) pressed the key on the side of the largest quantity. In the three control tasks, they indicated the side on which dimming occurred. A conjunction analysis between the three subtractions (comparison task-control task) revealed a site in left IPS that is specifically responsive when two stimuli have to be compared quantitatively, irrespective of stimulus format. The results confirm the hypothesis that quantity is represented by a common mechanism for both symbolic and nonsymbolic stimuli in IPS. In addition, the interaction between task and type of stimulus identified a region anterior to the conjunction site, not specific for quantitative processing, but reflecting general processes loaded by number processing.
Cited by
345 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献