Visual Localization Ability Influences Cross-Modal Bias

Author:

Hairston W. D.1,Wallace M. T.1,Vaughan J. W.1,Stein B. E.1,Norris J. L.1,Schirillo J. A.1

Affiliation:

1. Wake Forest University

Abstract

Abstract The ability of a visual signal to influence the localization of an auditory target (i.e., “cross-modal bias”) was examined as a function of the spatial disparity between the two stimuli and their absolute locations in space. Three experimental issues were examined: (a) the effect of a spatially disparate visual stimulus on auditory localization judgments; (b) how the ability to localize visual, auditory, and spatially aligned multi-sensory (visual-auditory) targets is related to cross-modal bias, and (c) the relationship between the magnitude of cross-modal bias and the perception that the two stimuli are spatially “unified” (i.e., originate from the same location). Whereas variability in localization of auditory targets was large and fairly uniform for all tested locations, variability in localizing visual or spatially aligned multisensory targets was much smaller, and increased with increasing distance from the midline. This trend proved to be strongly correlated with biasing effectiveness, for although visual-auditory bias was unexpectedly large in all conditions tested, it decreased progressively (as localization variability increased) with increasing distance from the mid-line. Thus, central visual stimuli had a substantially greater biasing effect on auditory target localization than did more peripheral visual stimuli. It was also apparent that cross-modal bias decreased as the degree of visual-auditory disparity increased. Consequently, the greatest visual-auditory biases were obtained with small disparities at central locations. In all cases, the magnitude of these biases covaried with judgments of spatial unity. The results suggest that functional properties of the visual system play the predominant role in determining these visual-auditory interactions and that cross-modal biases can be substantially greater than previously noted.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3