A Model of Saccade Initiation Based on the Competitive Integration of Exogenous and Endogenous Signals in the Superior Colliculus

Author:

Trappenberg Thomas P.1,Dorris Michael C.2,Munoz Douglas P.2,Klein Raymond M.3123

Affiliation:

1. University of Oxford, UK

2. Queen's University, Canada

3. Dalhousie University, Canada

Abstract

Abstract Significant advances in cognitive neuroscience can be achieved by combining techniques used to measure behavior and brain activity with neural modeling. Here we apply this approach to the initiation of rapid eye movements (saccades), which are used to redirect the visual axis to targets of interest. It is well known that the superior colliculus (SC) in the midbrain plays a major role in generating saccadic eye movements, and physiological studies have provided important knowledge of the activity pattern of neurons in this structure. Based on the observation that the SC receives localized sensory (exogenous) and voluntary (endogenous) inputs, our model assumes that this information is integrated by dynamic competition across local collicular interactions. The model accounts well for the effects upon saccadic reaction time (SRT) due to removal of fixation, the presence of distractors, execution of pro-versus antisaccades, and variation in target probability, and suggests a possible mechanism for the generation of express saccades. In each of these cases, the activity patterns of “neurons” within the model closely resemble actual cell behavior in the intermediate layer of the SC. The interaction structure we employ is instrumental for producing a physiologically faithful model and results in new insights and hypotheses regarding the neural mechanisms underlying saccade initiation.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

Cited by 384 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3