Detecting Hand Posture in Piano Playing Using Depth Data

Author:

Johnson David1,Damian Daniela1,Tzanetakis George1

Affiliation:

1. Department of Computer Science University of Victoria 3800 Finnerty Road Engineering and Computer Science Building, Room 504 Victoria, BC V8P 5C2 Canada

Abstract

We present research for automatic assessment of pianist hand posture that is intended to help beginning piano students improve their piano-playing technique during practice sessions. To automatically assess a student's hand posture, we propose a system that is able to recognize three categories of postures from a single depth map containing a pianist's hands during performance. This is achieved through a computer vision pipeline that uses machine learning on the depth maps for both hand segmentation and detection of hand posture. First, we segment the left and right hands from the scene captured in the depth map using per-pixel classification. To train the hand-segmentation models, we experiment with two feature descriptors, depth image features and depth context features, that describe the context of individual pixels' neighborhoods. After the hands have been segmented from the depth map, a posture-detection model classifies each hand as one of three possible posture categories: correct posture, low wrists, or flat hands. Two methods are tested for extracting descriptors from the segmented hands, histograms of oriented gradients and histograms of normal vectors. To account for variation in hand size and practice space, detection models are individually built for each student using support vector machines with the extracted descriptors. We validate this approach using a data set that was collected by recording four beginning piano students while performing standard practice exercises. The results presented in this article show the effectiveness of this approach, with depth context features and histograms of normal vectors performing the best.

Publisher

MIT Press - Journals

Subject

Computer Science Applications,Music,Media Technology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. VRmonic: A VR Piano Playing Form Trainer;2024 IEEE International Conference on Artificial Intelligence and eXtended and Virtual Reality (AIxVR);2024-01-17

2. Standardizing and Early Warning of Sewing Beginners’ Posture Based on CNN Visual Recognition Technology;Lecture Notes in Computer Science;2024

3. Research on Artificial Intelligence and Piano Playing Technology in Colleges and Universities Based on 5g Big Data Networks;Applied Mathematics and Nonlinear Sciences;2024-01-01

4. Historical Evolution and Modern Development of Piano Performance - A Visual Analysis Based on Cite space;Applied Mathematics and Nonlinear Sciences;2024-01-01

5. An empirical analysis of the evolution of piano performance skills based on big data;Applied Mathematics and Nonlinear Sciences;2023-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3