Live Coding Machine Learning: Finding the Moments of Intervention in Autonomous Processes

Author:

Paz Iván1,Knotts Shelly2

Affiliation:

1. Axolot, Ávila 154 bis, 08018 Barcelona, Spain ivanpaz@cs.upc.edu

2. The New Bridge Project, Shieldfield Centre, 4–8 Clarence Walk, Newcastle upon Tyne NE2 1AL, UK shelly@datamusician.net

Abstract

Abstract Machine learning (ML) deals with algorithms able to learn from data, with the primary aim of finding optimum solutions to perform tasks autonomously. In recent years there has been development in integrating ML algorithms with live coding practices, raising questions about what to optimize or automate, the agency of the algorithms, and in which parts of the ML processes one might intervene midperformance. Live coding performance practices typically involve conversational interaction with algorithmic processes in real time. In analyzing systems integrating live coding and ML, we consider the musical and performative implications of the “moment of intervention” in the ML model and workflow, and the channels for real-time intervention. We propose a framework for analysis, through which we reflect on the domain-specific algorithms and practices being developed that combine these two practices.

Publisher

MIT Press

Reference44 articles.

1. Tensorflow: A System for Large-Scale Machine Learning;Abadi;Proceedings of the USENIX Symposium on Operating Systems Design and Implementation,2016

2. Gene Expression Synthesis;Allik;Proceedings of the Joint International Computer Music Conference and the Sound and Music Computing Conference,2014

3. Augmented Live Coding: Harnessing Linked Data in Musical Performances;Allik;Extended Abstracts for the Late-breaking Demo Session of the International Society for Music Information Retrieval Conference,2015

4. The Machine Is Learning;Baalman,2019

5. An Interface for Realtime Music Using Interpreted Haskell;Bell;Proceedings of the Linux Audio Conference,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3