Interactive Spatial Sonification of Multidimensional Data for Composition and Auditory Display

Author:

Barrett Natasha1

Affiliation:

1. University of Oslo Department of Musicology Postboks 1017, Blindern, 0315 Oslo, Norway Web: www.natashabarrett.org

Abstract

This article presents a new approach to interactive spatial sonification of multidimensional data as a tool for spatial sound synthesis, for composing temporal–spatial musical materials, and as an auditory display for scientists to analyze multidimensional data sets in time and space. The approach applies parameter-mapping sonification and is currently implemented in an application called Cheddar, which was programmed in Max/MSP. Cheddar sonifies data in real time, where the user can modify a wide variety of temporal, spatial, and sonic parameters during the listening process, and thus more easily uncover patterns and processes in the data than when applying non-real-time, noninteractive techniques. The design draws on existing literature concerning perception and acoustics, and it applies the author's practical experience in acousmatic composition, spectromorphology, and sound semantics, while addressing accuracy, flexibility, and ease of use. Although previous sonification applications have addressed some degree of real-time control and spatialization, this approach integrates space and sound in an interactive framework. Spatial information is sonified in high-order 3-D ambisonics, where the user can interactively move the virtual listening position to reveal details easily missed from fixed or noninteractive spatial views. Sounds used as input to the sonification take advantage of the rich spectra and extramusical attributes of acoustic sources, which, although previously theorized, are investigated here in a practical context thoroughly tested alongside acoustic and psychoacoustic considerations. Furthermore, when using Cheddar, no specialized knowledge of programming, acoustics, or psychoacoustics is required. These approaches position Cheddar at the junction between science and art. With one application serving both disciplines, the patterns and processes of science are more fluently appropriated into music or sound art, and vice versa for scientific research, science public outreach, and education.

Publisher

MIT Press - Journals

Subject

Computer Science Applications,Music,Media Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3