A Study of Musical Pitch Distance Using a Self-Organized Hierarchical Linear Dynamical System on Acoustic Signals

Author:

Cinar Goktug T.1,Sain James P.2,Principe Jose C.1

Affiliation:

1. Computational NeuroEngineering Lab, University of Florida Gainesville, FL 32611 USA

2. School of Music University of Florida Gainesville, FL 32611 USA

Abstract

The hierarchical linear dynamical system (HLDS) is a self-organizing architecture to cluster acoustic time series. The HLDS architecture is equivalent to a Kalman filter whose top-layer state learns to create subspaces that tessellate the acoustic signal in regions that correspond to different musical pitches. The observation layer of the HLDS is built from a biologically plausible gammatone filter bank that provides the representation space for the state assignments. An important characteristic of the methodology is that it is adaptive and self-organizing, i.e., previous exposure to the acoustic input is the only requirement for learning and recognition. In this article we show that the representation space that the algorithm learns from acoustic signals preserves the organization found in monophonic notes, and exhibits (for isolated pitches and triads) properties suggested in the theory of efficient chromatic voice leading and neo-Riemannian theories.

Publisher

MIT Press - Journals

Subject

Computer Science Applications,Music,Media Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Composite Dynamic Texture Synthesis Using Hierarchical Linear Dynamical System;ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2020-05

2. Hierarchical linear dynamical systems for unsupervised musical note recognition;Journal of the Franklin Institute;2018-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3