Categorical versus Coordinate Spatial Processing: Effects of Blurring and Hemispheric Asymmetry

Author:

Cowin Elizabeth L.,Hellige Joseph B.1

Affiliation:

1. University of Southern California

Abstract

Abstract The present experiment examined the effects of dioptric blurring on the performance of two different spatial processing tasks using the same visual stimuli. One task (the above/below, categorical task) required subjects to indicate whether a dot was above or below a horizontal line. The other task (the coordinate, near/far task) required subjects to indicate whether the dot was within 3 mm of the line. For both tasks, the stimuli on each trial were presented to either the right visual field and left hemisphere (RVF/LH) or the left Visual field and right hemisphere (LVF/RH). For the above/below task, dioptric blurring consistently increased reaction time (RT) and did so equally on LVF/RH and RVF/LH trials. Furthermore, there was no significant difference between the two visual fields for either clear or blurred stimuli. For the near/far task, dioptric blurring had no consistent effect on either RT or error rate for either visual field. On an initial block of trials, however, there were significantly fewer errors on LVF/RH than on RVF/LH trials, with the LVF/RH advantage being independent of whether the stimuli were clear or blurred. This initial LVF/RH advantage disappeared quickly with practice, regardless of whether the stimuli were clear or blurred. This pattern of results suggests that for both cerebral hemispheres, somewhat different aspects of visual information are relevant for categorical versus coordinate spatial processing and that the right hemisphere is superior to the left for coordinate (but not categorical) spatial processing.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3