A Common Neural Substrate for Language Production and Verbal Working Memory

Author:

Acheson Daniel J.1,Hamidi Massihullah1,Binder Jeffrey R.2,Postle Bradley R.1

Affiliation:

1. 1University of Wisconsin-Madison

2. 2Medical College of Wisconsin

Abstract

Abstract Verbal working memory (VWM), the ability to maintain and manipulate representations of speech sounds over short periods, is held by some influential models to be independent from the systems responsible for language production and comprehension [e.g., Baddeley, A. D. Working memory, thought, and action. New York, NY: Oxford University Press, 2007]. We explore the alternative hypothesis that maintenance in VWM is subserved by temporary activation of the language production system [Acheson, D. J., & MacDonald, M. C. Verbal working memory and language production: Common approaches to the serial ordering of verbal information. Psychological Bulletin, 135, 50–68, 2009b]. Specifically, we hypothesized that for stimuli lacking a semantic representation (e.g., nonwords such as mun), maintenance in VWM can be achieved by cycling information back and forth between the stages of phonological encoding and articulatory planning. First, fMRI was used to identify regions associated with two different stages of language production planning: the posterior superior temporal gyrus (pSTG) for phonological encoding (critical for VWM of nonwords) and the middle temporal gyrus (MTG) for lexical–semantic retrieval (not critical for VWM of nonwords). Next, in the same subjects, these regions were targeted with repetitive transcranial magnetic stimulation (rTMS) during language production and VWM task performance. Results showed that rTMS to the pSTG, but not the MTG, increased error rates on paced reading (a language production task) and on delayed serial recall of nonwords (a test of VWM). Performance on a lexical–semantic retrieval task (picture naming), in contrast, was significantly sensitive to rTMS of the MTG. Because rTMS was guided by language production-related activity, these results provide the first causal evidence that maintenance in VWM directly depends on the long-term representations and processes used in speech production.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3