Author:
Pontifex Matthew B.,Raine Lauren B.,Johnson Christopher R.,Chaddock Laura,Voss Michelle W.,Cohen Neal J.,Kramer Arthur F.,Hillman Charles H.
Abstract
Abstract
The influence of cardiorespiratory fitness on the modulation of cognitive control was assessed in preadolescent children separated into higher- and lower-fit groups. Participants completed compatible and incompatible stimulus–response conditions of a modified flanker task, consisting of congruent and incongruent arrays, while ERPs and task performance were concurrently measured. Findings revealed decreased response accuracy for lower- relative to higher-fit participants with a selectively larger deficit in response to the incompatible stimulus–response condition, requiring the greatest amount of cognitive control. In contrast, higher-fit participants maintained response accuracy across stimulus–response compatibility conditions. Neuroelectric measures indicated that higher-fit, relative to lower-fit, participants exhibited global increases in P3 amplitude and shorter P3 latency, as well as greater modulation of P3 amplitude between the compatible and incompatible stimulus–response conditions. Similarly, higher-fit participants exhibited smaller error-related negativity (ERN) amplitudes in the compatible condition, and greater modulation of the ERN between the compatible and incompatible conditions, relative to lower-fit participants who exhibited large ERN amplitudes across both conditions. These findings suggest that lower-fit children may have more difficulty than higher-fit children in the flexible modulation of cognitive control processes to meet task demands.