Deep Learning with Heterogeneous Graph Embeddings for Mortality Prediction from Electronic Health Records

Author:

Wanyan Tingyi12,Honarvar Hossein1,Azad Ariful2,Ding Ying34,Glicksberg Benjamin S.15

Affiliation:

1. Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York 10065, USA

2. School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN 47405-7000, USA

3. Dell Medical School, University of Texas at Austin, Austin, Texas 78701-1996, USA

4. School of Informatics, University of Texas at Austin, Austin, Texas 78712-1139, USA

5. Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10065, USA

Abstract

Computational prediction of in-hospital mortality in the setting of an intensive care unit can help clinical practitioners to guide care and make early decisions for interventions. As clinical data are complex and varied in their structure and components, continued innovation of modelling strategies is required to identify architectures that can best model outcomes. In this work, we trained a Heterogeneous Graph Model (HGM) on electronic health record (EHR) data and used the resulting embedding vector as additional information added to a Convolutional Neural Network (CNN) model for predicting in-hospital mortality. We show that the additional information provided by including time as a vector in the embedding captured the relationships between medical concepts, lab tests, and diagnoses, which enhanced predictive performance. We found that adding HGM to a CNN model increased the mortality prediction accuracy up to 4%. This framework served as a foundation for future experiments involving different EHR data types on important healthcare prediction tasks.

Publisher

MIT Press - Journals

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3