Bi-GRU Relation Extraction Model Based on Keywords Attention

Author:

Zhang Yuanyuan1,Chen Yu2,Yu Shengkang1,Gu Xiaoqin1,Song Mengqiong1,Peng Yu1,Chen Jianxia2,Liu Qi2

Affiliation:

1. Technical Training Center of State Grid Hubei Electric Power Co., Ltd. Wuhan 430070, China

2. Hubei University of Technology, School of Computer Science, Wuhan 430068, China

Abstract

Abstract Relational extraction plays an important role in the field of natural language processing to predict semantic relationships between entities in a sentence. Currently, most models have typically utilized the natural language processing tools to capture high-level features with an attention mechanism to mitigate the adverse effects of noise in sentences for the prediction results. However, in the task of relational classification, these attention mechanisms do not take full advantage of the semantic information of some keywords which have information on relational expressions in the sentences. Therefore, we propose a novel relation extraction model based on the attention mechanism with keywords, named Relation Extraction Based on Keywords Attention (REKA). In particular, the proposed model makes use of bi-directional GRU (Bi-GRU) to reduce computation, obtain the representation of sentences, and extracts prior knowledge of entity pair without any NLP tools. Besides the calculation of the entity-pair similarity, Keywords attention in the REKA model also utilizes a linear-chain conditional random field (CRF) combining entity-pair features, similarity features between entity-pair features, and its hidden vectors, to obtain the attention weight resulting from the marginal distribution of each word. Experiments demonstrate that the proposed approach can utilize keywords incorporating relational expression semantics in sentences without the assistance of any high-level features and achieve better performance than traditional methods.

Publisher

MIT Press

Subject

Artificial Intelligence,Library and Information Sciences,Computer Science Applications,Information Systems

Reference48 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Named Entity Recognition for Chinese Texts on Marine Coral Reef Ecosystems Based on the BERT-BiGRU-Att-CRF Model;Applied Sciences;2024-07-01

2. Inductive Node Classification Based on Masked Graph Self-Encoders;2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta);2022-12

3. Aspect-Level Sentiment Classification Based on Self-Attention Routing via Capsule Network;2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta);2022-12

4. RS-SVM Machine Learning Approach Driven by Case Data for Selecting Urban Drainage Network Restoration Scheme;Data Intelligence;2022-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3